390 research outputs found

    Explaining the presence of perennial liquid water bodies in the firn of the Greenland Ice Sheet

    Get PDF
    pre-printRecent observations have shown that the firn layer on the Greenland Ice Sheet features subsurface bodies of liquid water at the end of the winter season. Using a model with basic firn hydrology, thermodynamics, and compaction in one dimension, we find that a combination of moderate to strong surface melt and a high annual accumulation rate is required to form such a perennial firn aquifer. The high accumulation rate ensures that there is pore space available to store water at a depth where it is protected from the winter cold. Low-accumulation sites cannot provide sufficiently deep pore space to store liquid water. However, for even higher accumulation rates, the total cold content of the winter accumulation becomes sufficient to refreeze the total amount of liquid water. As a consequence, wintertime or springtime observations of subsurface liquid water in these specific accumulation conditions cannot distinguish between a truly perennial firn aquifer and water layers that will ultimately refreeze completely

    Effects of bedrock lithology and subglacial till on the motion of Ruth Glacier, Alaska, deduced from five pulses from 1973 to 2012

    Get PDF
    pre-printA pulse is a type of unstable glacier flow intermediate between normal flow and surging. Using Landsat MSS, TM and ETM+ imagery and feature-tracking software, a time series of mostly annual velocity maps from 1973 to 2012 was produced that reveals five pulses of Ruth Glacier, Alaska. Peaks in ice velocity were found in 1981, 1989, 1997, 2003 and 2010, approximately every 7 years. During these peak years the ice velocity increased 300%, from approximately 40ma-1 to 160ma-1. Based on the spatio-temporal behavior of Ruth Glacier during the pulse cycles, we suggest the pulses are due to enhanced basal motion via deformation of a subglacial till. The cyclical nature of the pulses is interpreted to be due to a thin till, with low permeability, that causes incomplete drainage of the till between the pulses, followed by eventual recharge and dilation of the till. These findings suggest care is needed when attempting to correlate changes in regional climate with decadal-scale changes in velocity, because in some instances basal conditions may have a greater influence on ice dynamics than climate

    Summer melt regulates winter glacier flow speeds throughout Alaska

    Get PDF
    pre-printPredicting how climate change will affect glacier and ice sheet flow speeds remains a large hurdle toward accurate sea level rise forecasting. Increases in surface melt rates are known to accelerate glacier flow in summer, whereas in winter, flow speeds are believed to be relatively invariant. Here we show that wintertime flow speeds on nearly all major glaciers throughout Alaska are not only variable but are inversely related to melt from preceding summers. For each additional meter of summertime melt, we observe an 11% decrease in wintertime velocity on glaciers of all sizes, geometries, climates, and bed types. This dynamic occurs because interannual differences in summertime melt affect how much water is retained in the subglacial system during winter. The ubiquity of the dynamic indicates it occurs globally on glaciers and ice sheets not frozen to their beds and thus constitutes a new mechanism affecting sea level rise projections

    Prevalence of pure versus mixed snow cover pixels across spatial resolutions in alpine environments

    Get PDF
    pre-printRemote sensing of snow-covered area (SCA) can be binary (indicating the presence/absence of snow cover at each pixel) or fractional (indicating the fraction of each pixel covered by snow). Fractional SCA mapping provides more information than binary SCA, but is more difficult to implement and may not be feasible with all types of remote sensing data. The utility of fractional SCA mapping relative to binary SCA mapping varies with the intended application as well as by spatial resolution, temporal resolution and period of interest, and climate. We quantified the frequency of occurrence of partially snow-covered (mixed) pixels at spatial resolutions between 1 m and 500 m over five dates at two study areas in the western U.S., using 0.5 m binary SCA maps derived from high spatial resolution imagery aggregated to fractional SCA at coarser spatial resolutions. In addition, we used in situ monitoring to estimate the frequency of partially snow-covered conditions for the period September 2013-August 2014 at 10 60-m grid cell footprints at two study areas with continental snow climates. Results from the image analysis indicate that at 40 m, slightly above the nominal spatial resolution of Landsat, mixed pixels accounted for 25%-93% of total pixels, while at 500 m, the nominal spatial resolution of MODIS bands used for snow cover mapping, mixed pixels accounted for 67%-100% of total pixels. Mixed pixels occurred more commonly at the continental snow climate site than at the maritime snow climate site. The in situ data indicate that some snow cover was present between 186 and 303 days, and partial snow cover conditions occurred on 10%-98% of days with snow cover. Four sites remained partially snow-free throughout most of the winter and spring, while six sites were entirely snow covered throughout most or all of the winter and spring. Within 60 m grid cells, the late spring/summer transition from snow-covered to snow-free conditions lasted 17-56 days and averaged 37 days. Our results suggest that mixed snow-covered snow-free pixels are common at the spatial resolutions imaged by both the Landsat and MODIS sensors. This highlights the additional information available from fractional SCA products and suggests fractional SCA can provide a major advantage for hydrological and climatological monitoring and modeling, particularly when accurate representation of the spatial distribution of snow cover is critical

    Ice surface morphology and flow on Malaspina Glacier, Alaska: Implications for regional tectonics in the Saint Elias orogen

    Get PDF
    pre-printThe Saint Elias Mountains in southern Alaska are located at a structural syntaxis where the coastal thrust and fold belt of the Fairweather plate boundary intersects thrust faults and folds generated by collision of the Yakutat Terrane. The axial trace of this syntaxis extends southeastward out of the Saint Elias Mountains and beneath Malaspina Glacier where it is hidden from view and cannot be mapped using conventional methods. Here we examine the surface morphology and flow patterns of Malaspina Glacier to infer characteristics of the bedrock topography and organization of the syntaxis. Faults and folds beneath the eastern part of the glacier trend northwest and reflect dextral transpression near the terminus of the Fairweather fault system. Those beneath the western part of the glacier trend northeast and accommodate folding and thrust faulting during collision and accretion of the Yakutat Terrane. Mapping the location and geometry of the structural syntaxis provides important constraints on spatial variations in seismicity, fault kinematics, and crustal shortening beneath Malaspina Glacier, as well as the position of the collisional deformation front within the Yakutat Terrane. We also speculate that the geometrical complexity of intersecting faults within the syntaxis formed a barrier to rupture propagation during two regional Mw 8.1 earthquakes in September 1899

    Initial in situ measurements of perennial meltwater storage in the Greenland firn aquifer

    Get PDF
    pre-printA perennial storage of water in a firn aquifer was discovered in southeast Greenland in 2011. We present the first in situ measurements of the aquifer, including densities and temperatures. Water was present at depths between ~12 and 37m and amounted to 18.7 ± 0.9 kg in the extracted core. The water filled the firn to capacity at ~35m. Measurements show the aquifer temperature remained at the melting point, representing a large heat reservoir within the firn. Using model results of liquid water extent and aquifer surface depth from radar measurements, we extend our in situ measurements to the Greenland ice sheet. The estimated water volume is 140 ± 20 Gt, representing ~0.4mm of sea level rise (SLR). It is unknown if the aquifer temporary buffers SLR or contributes to SLR through drainage and/or ice dynamics

    Preliminary results of polarization signatures for glacial moraines in the Mono Basin, Eastern Sierra Nevada

    Get PDF
    The valleys of the Mono Basin contain several sets of lateral and terminal moraines representing multiple stages of glaciation. The semi-arid climate with slow weathering rates preserved sequences of nested younger moraines within older ones. There is a well established relative chronology and recently exposure dating provided a new set of numerical dates. The moraines span the late Wisconsin (11-25 ka) to the Illinoian (130-190 ka) glaciations. The Mono Basin area was used as a 'calibration site' to establish remote dating techniques for eventual transfer to the more inaccessible but geomorphically and climatically similar moraines of the South American Andes Mountains. Planned polarimetric synthetic aperture radar (SAR) imagery acquired by JPL AIRSAR (South American Campaign) and SIR-C (Andes super-site) are analyzed to establish chronologies of previously undated moraine sequences in a study of Pleistocene climatic change in the Southern Hemisphere. The dry climate and sparse vegetation is also favorable for correlation of ground surface roughness with radar polarization signature. The slow weathering processes acting over thousands of years reduce the size, frequency, and angularity of surface boulders while increasing soil development on the moraines. Field observations based on this hypothesis result in relative ages consistent with those inferred from nested position within the valley. Younger moraines, therefore, will appear rougher than the older smoother moraines at scales measurable at AIRSAR wavelengths. Previously documented effects of ground surface roughness on polarization signatures suggest that analysis of moraine polarization signatures can be useful for relative dating. The technique may be extended to predict numerical ages. The data set reported were acquired on 8 Sep. 1989 with the JPL Airborne SAR (AIRSAR) collecting polarimetric imagery at C- (5.6 cm), L- (24 cm), and P-band (68 cm) with a flight-line parallel to the strike of the mountains. Phase calibration was performed on the analyzed scene by setting the co-phase of a smooth lake to zero as described. Absolute amplitude calibration was not possible because corner reflectors were not deployed

    The Propagation of a Surge Front on Bering Glacier, Alaska, 2001-2011

    Get PDF
    Bering Glacier, Alaska, USA, has a 20 year surge cycle, with its most recent surge reaching the terminus in 2011. To study this most recent activity a time series of ice velocity maps was produced by applying optical feature-tracking methods to Landsat-7 ETM+ imagery spanning 2001-11. The velocity maps show a yearly increase in ice surface velocity associated with the down-glacier movement of a surge front. In 2008/09 the maximum ice surface velocity was 1.5 plus or minus 0.017 kilometers per a in the mid-ablation zone, which decreased to 1.2 plus or minus 0.015 kilometers per a in 2009/10 in the lower ablation zone, and then increased to nearly 4.4 plus or minus 0.03 kilometers per a in summer 2011 when the surge front reached the glacier terminus. The surge front propagated down-glacier as a kinematic wave at an average rate of 4.4 plus or minus 2.0 kilometers per a between September 2002 and April 2009, then accelerated to 13.9 plus or minus 2.0 kilometers per a as it entered the piedmont lobe between April 2009 and September 2010. Thewave seems to have initiated near the confluence of Bering Glacier and Bagley Ice Valley as early as 2001, and the surge was triggered in 2008 further down-glacier in the mid-ablation zone after the wave passed an ice reservoir area

    Initial in Situ Measurements of Perennial Meltwater Storage in the Greenland Firn Aquifer

    Get PDF
    A perennial storage of water in a firn aquifer was discovered in southeast Greenland in 2011. We present the first in situ measurements of the aquifer, including densities and temperatures. Water was present at depths between approx. 12 and 37m and amounted to 18.7 +/- 0.9 kg in the extracted core. The water filled the firn to capacity at approx. 35m. Measurements show the aquifer temperature remained at the melting point, representing a large heat reservoir within the firn. Using model results of liquid water extent and aquifer surface depth from radar measurements, we extend our in situ measurements to the Greenland ice sheet. The estimated water volume is 140 +/- 20 Gt, representing approx. 0.4mm of sea level rise (SLR). It is unknown if the aquifer temporary buffers SLR or contributes to SLR through drainage and/or ice dynamics

    Glaciological studies in the central Andes using AIRSAR/TOPSAR

    Get PDF
    The interaction of climate and topography in mountainous regions is dramatically expressed in the spatial distribution of glaciers and snowcover. Monitoring existing alpine glaciers and snow extent provides insight into the present mountain climate system and how it is changing, while mapping the positions of former glaciers as recorded in landforms such as cirques and moraines provide a record of the large past climate change associated with the last glacial maximum. The Andes are an ideal mountain range in which to study the response of snow and ice to past and present climate change. Their expansive latitudinal extent offers the opportunity to study glaciers in diverse climate settings from the tropical glaciers of Peru and Bolivia to the ice caps and tide-water glaciers of sub-polar Patagonia. SAR has advantages over traditional passive remote sensing instruments for monitoring present snow and ice and differentiating moraine relative ages. The cloud penetrating ability of SAR is indispensable for perennially cloud covered mountains. Snow and ice facies can be distinguished from SAR's response to surface roughness, liquid water content and grain size distribution. The combination of SAR with a coregestered high-resolution DEM (TOPSAR) provides a promising tool for measuring glacier change in three dimensions, thus allowing ice volume change to be measured directly. The change in moraine surface roughness over time enables SAR to differentiate older from younger moraines. Polarimetric SAR data have been used to distinguish snow and ice facies and relatively date moraines. However, both algorithms are still experimental and require ground truth verification. We plan to extend the SAR classification of snow and ice facies and moraine age beyond the ground truth sites to throughout the Cordillera Real to provide a regional view of past and present snow and ice. The high resolution DEM will enhance the SAR moraine dating technique by discriminating relative ages based on moraine slope degradation
    corecore